ParameterizedTruncatedNormal
tensorflow C++ API
tensorflow::ops::ParameterizedTruncatedNormal
Outputs random values from a normal distribution.
Summary
The parameters may each be a
scalar which applies to the entire output, or a vector of length shape[0] which stores the parameters for each batch.
Arguments:
- scope: A Scope object
- shape: The shape of the output tensor. Batches are indexed by the 0th dimension.
- means: The mean parameter of each batch.
- stdevs: The standard deviation parameter of each batch. Must be greater than 0.
- minvals: The minimum cutoff. May be -infinity.
- maxvals: The maximum cutoff. May be +infinity, and must be more than the minval for each batch.
Optional attributes (see Attrs
):
- seed: If either
seed
orseed2
are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. - seed2: A second seed to avoid seed collision.
Returns:
Output
- A matrix of shape num_batches x samples_per_batch, filled with random truncated normal values using the parameters for each row.
ParameterizedTruncatedNormal block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_random.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input shape: connect Input node.
- Input means : connect Input node.
- Input stdevs: connect Input node.
- Input means : connect Input node.
- Input minvals: connect Input node
- Input maxvals: connect Input node.
- ParameterizedTruncatedNormal ::Attrs attrs : Input attrs in value. ex) seed_ = 0;seed2_ = 0;
Return:
- Output output : Output object of ParameterizedTruncatedNormal class object.
Result:
- std::vector(Tensor) product_result : Returned object of executed result by calling session.