QuantizedMaxPool
tensorflow C++ API
tensorflow::ops::QuantizedMaxPool
Produces the max pool of the input tensor for quantized types.
Summary
Arguments:
- scope: A Scope object
 - input: The 4D (batch x rows x cols x depth) Tensor to MaxReduce over.
 - min_input: The float value that the lowest quantized input value represents.
 - max_input: The float value that the highest quantized input value represents.
 - ksize: The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
 - strides: The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
 - padding: The type of padding algorithm to use.
 
Returns:
OutputoutputOutputmin_output: The float value that the lowest quantized output value represents.Outputmax_output: The float value that the highest quantized output value represents.
QuantizedMaxPool block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
 - Input filter: connect Input node.
 - Input min_input: connect Input node.
 - Input max_input: connect Input node.
 - ArraySlice< int> ksize: input ksize in values. ex)1,1,1,1
 - ArraySlice< int> strides: input ksize in values. ex)1,3,2,1
 - stringpiece padding: input padding in value. ex)SAME
 
Return:
- Output output: Output object of QuantizedMaxPool class object.
 - Output min_output: Output object of QuantizedMaxPool class object.
 - Output max_output: Output object of QuantizedMaxPool class object.
 
Result:
- std::vector(Tensor) result_output : Returned object of executed result by calling session.
 - std::vector(Tensor) result_min_output : Returned object of executed result by calling session.
 - std::vector(Tensor) result_max_output : Returned object of executed result by calling session.