QuantizedBatchNormWithGlobalNormalization
tensorflow C++ API
tensorflow::ops::QuantizedBatchNormWithGlobalNormalization
Quantized Batch normalization.
Summary
This op is deprecated and will be removed in the future. Prefertf.nn.batch_normalization
.
Arguments:
- scope: A Scope object
- t: A 4D input Tensor.
- t_min: The value represented by the lowest quantized input.
- t_max: The value represented by the highest quantized input.
- m: A 1D mean Tensor with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.
- m_min: The value represented by the lowest quantized mean.
- m_max: The value represented by the highest quantized mean.
- v: A 1D variance Tensor with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.
- v_min: The value represented by the lowest quantized variance.
- v_max: The value represented by the highest quantized variance.
- beta: A 1D beta Tensor with size matching the last dimension of t. An offset to be added to the normalized tensor.
- beta_min: The value represented by the lowest quantized offset.
- beta_max: The value represented by the highest quantized offset.
- gamma: A 1D gamma Tensor with size matching the last dimension of t. If “scale_after_normalization” is true, this tensor will be multiplied with the normalized tensor.
- gamma_min: The value represented by the lowest quantized gamma.
- gamma_max: The value represented by the highest quantized gamma.
- variance_epsilon: A small float number to avoid dividing by 0.
- scale_after_normalization: A bool indicating whether the resulted tensor needs to be multiplied with gamma.
Returns:
QuantizedAvgPool block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input t: connect Input node.
- Input t_min: connect Input node.
- Input t_max: connect Input node.
- Input m: connect Input node.
- Input m_min: connect Input node.
- Input m_max: connect Input node.
- Input v: connect Input node.
- Input v_min: connect Input node.
- Input v_max: connect Input node.
- Input beta: connect Input node.
- Input beta_min: connect Input node.
- Input beta_max: connect Input node.
- Input gamma: connect Input node.
- Input gamma_min: connect Input node.
- Input gamma_max: connect Input node.
- DataType out_type : input DataType in value.
- float variance_epsilon: input float in value.
- bool scale_after_normalization: input bool in value.
Return:
- Output result: Output object of QuantizedAvgPool class object.
- Output result_min: Output object of QuantizedAvgPool class object.
- Output result_max: Output object of QuantizedAvgPool class object.
Result:
- std::vector(Tensor) result_result : Returned object of executed result by calling session.
- std::vector(Tensor) result_result_min : Returned object of executed result by calling session.
- std::vector(Tensor) result_result_max : Returned object of executed result by calling session.