MaxPool3DGrad
tensorflow C++ API
tensorflow::ops::MaxPool3DGrad
Computes gradients of max pooling function.
Summary
Arguments:
- scope: A Scope object
- orig_input: The original input tensor.
- orig_output: The original output tensor.
- grad:Output backprop of shape
[batch, depth, rows, cols, channels]
. - ksize: 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have
ksize[0] = ksize[4] = 1
. - strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of
input
. Must havestrides[0] = strides[4] = 1
. - padding: The type of padding algorithm to use.
Optional attributes (seeAttrs
):
- data_format: The data format of the input and output data. With the default format “NDHWC”, the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be “NCDHW”, the data storage order is: [batch, in_channels, in_depth, in_height, in_width].
Returns:
Output
: The output tensor.
MaxPool3DGrad block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input orig_input: connect Input node.
- Input orig_output: connect Input node.
- Input grad: connect Input node.
- ArraySlice< int> ksize: input ksize in values. ex)1,2,2,2,1
- ArraySlice< int> strides: input ksize in values. ex)1,4,3,2,1
- stringpiece padding: input padding in value. ex)SAME
- MaxPool3DGrad ::Attrs attrs: input attrs in values )data_format_ = NDHWC;
Return:
- Output output: Output object of MaxPool3DGrad class object.
Result:
- std::vector(Tensor) result_output : Returned object of executed result by calling session.