DynamicPartition
tensorflow C++ API
tensorflow::ops::DynamicPartition
Partitionsdataintonum_partitionstensors using indices frompartitions.
Summary
For each index tuplejsof sizepartitions.ndim, the slicedata[js, ...]becomes part ofoutputs[partitions[js]]. The slices withpartitions[js] = iare placed inoutputs[i]in lexicographic order ofjs, and the first dimension ofoutputs[i]is the number of entries inpartitionsequal toi. In detail,
```python outputs[i].shape = [sum(partitions == i)] + data.shape[partitions.ndim:]
outputs[i] = pack([data[js, …] for js if partitions[js] == i]) ```
data.shapemust start withpartitions.shape.
For example:
```python Scalar partitions.
partitions = 1 num_partitions = 2 data = [10, 20] outputs[0] = [] # Empty with shape [0, 2] outputs[1] = [[10, 20]]
Vector partitions.
partitions = [0, 0, 1, 1, 0] num_partitions = 2 data = [10, 20, 30, 40, 50] outputs[0] = [10, 20, 50] outputs[1] = [30, 40] ```
Seedynamic_stitchfor an example on how to merge partitions back.
Arguments:
- scope: A Scope object
- partitions: Any shape. Indices in the range
[0, num_partitions). - num_partitions: The number of partitions to output.
Returns:
- OutputList : The outputs tensor.
Constructor
- DynamicPartition(const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input partitions, int64 num_partitions).
Public attributes
- tensorflow::Output outputs.
DynamicPartition block
Source link : https://github.com/EXPNUNI/enuSpace-Tensorflow/blob/master/enuSpaceTensorflow/tf_data_flow_ops.cpp

Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- data : connect Input node or input data.
- partitions : connect Input node or input int32 value.
- num_partitions : connect Input node or input int64 value.
Return:
- Output outputs: Output object of DynamicPartition class object.
Result:
- std::vector(Tensor) product_result : Returned object of executed result by calling session.
Using Method
